Comparative Evaluation of Distributed Clustering Schemes for Multi-source Entity Resolution
نویسندگان
چکیده
Entity resolution identifies semantically equivalent entities, e.g., describing the same product or customer. It is especially challenging for big data applications where large volumes of data from many sources have to be matched and integrated. Entity resolution for multiple data sources is best addressed by clustering schemes that group all matching entities within clusters. While there are many possible clustering schemes for entity resolution, their relative suitability and scalability is still unclear. We therefore implemented and comparatively evaluate distributed versions of six clustering schemes based on Apache Flink within a new entity resolution framework called Famer. Our evaluation for different real-life and synthetically generated datasets considers both the match quality as well as the scalability for different number of machines and data sizes.
منابع مشابه
A New Method for Duplicate Detection Using Hierarchical Clustering of Records
Accuracy and validity of data are prerequisites of appropriate operations of any software system. Always there is possibility of occurring errors in data due to human and system faults. One of these errors is existence of duplicate records in data sources. Duplicate records refer to the same real world entity. There must be one of them in a data source, but for some reasons like aggregation of ...
متن کاملThe Effect of Transitive Closure on the Calibration of Logistic Regression for Entity Resolution
This paper describes a series of experiments in using logistic regression machine learning as a method for entity resolution. From these experiments the authors concluded that when a supervised ML algorithm is trained to classify a pair of entity references as linked or not linked pair, the evaluation of the model’s performance should take into account the transitive closure of its pairwise lin...
متن کاملDistributed Holistic Clustering on Linked Data
Link discovery is an active field of research to support data integration in the Web of Data. Due to the huge size and number of available data sources, efficient and effective link discovery is a very challenging task. Common pairwise link discovery approaches do not scale to many sources with very large entity sets. We here propose a distributed holistic approach to link many data sources bas...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملMLCA: A Multi-Level Clustering Algorithm for Routing in Wireless Sensor Networks
Energy constraint is the biggest challenge in wireless sensor networks because the power supply of each sensor node is a battery that is not rechargeable or replaceable due to the applications of these networks. One of the successful methods for saving energy in these networks is clustering. It has caused that cluster-based routing algorithms are successful routing algorithm for these networks....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017